Screening mouse vision with intrinsic signal optical imaging.

نویسندگان

  • J Alexander Heimel
  • Robin J Hartman
  • Josephine M Hermans
  • Christiaan N Levelt
چکیده

The introduction of forward genetic screens in the mouse asks for techniques that make rapid screening of visual function possible. Transcranial imaging of intrinsic signal is suitable for this purpose and could detect the effects of retinal degeneration, and the increased predominance of the contralateral eye in albino animals. We quantified visual response properties of the cortex by introducing a normalization method to reduce the impact of biological noise. In addition, the presentation of a 'reset'-stimulus shortly after the probing stimulus at a different visual location could reduce the interstimulus time necessary for the decay of the response. Applying these novel methods, we found that acuity of C57Bl/6J mice rises from 0.35 cycles per degree (cpd) at postnatal day 25 to 0.56 cpd in adults. Temporal resolution was lower in adults than in juvenile animals. There was no patchy organization of spatial or temporal frequency preference at the intrinsic signal resolution. Monocular deprivation, a model for amblyopia and critical period plasticity, led to a loss in acuity and a shift towards the nondeprived eye in juvenile animals. Short deprivation did not lead to increased acuity of the nondeprived eye. In adults, a small ocular dominance shift was detectable with urethane anaesthesia. This was not observed when the combination of the opiate fentanyl, fluanisone with a benzodiazepine was used, adding evidence to the hypothesis that enhancing GABA(A)-receptor function masks an adult shift. Together, these novel applications confirm that noninvasive screening of many functional properties of the visual cortex is possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical intrinsic signal mapping of rod- and cone-mediated visual cortex responses in mice

We used optical imaging of intrinsic signals to study visual cortex responses in three mouse strains: wild-type (C57BL/6J), a strain with only rod function (cpfl1), and a strain with only cone function (rho(-/-)). A stationary flicker light stimulus with intensity ranging from 10(8.6) to 10(15.5) photons/cm2/s was used. We found that the intrinsic signal patterns exhibited stimulus intensity-de...

متن کامل

Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.

The responses of cells in the visual cortex to stimulation of the two eyes changes dramatically following a period of monocular visual deprivation (MD) during a critical period in early life. This phenomenon, referred to as ocular dominance (OD) plasticity, is a widespread model for understanding cortical plasticity. In this study, we designed stimulus patterns and quantification methods to ana...

متن کامل

Mapping retinotopic structure in mouse visual cortex with optical imaging.

We have used optical imaging of intrinsic signals to visualize the retinotopic organization of mouse visual cortex. The functionally determined position, size, and shape of area 17 corresponded precisely to the location of this area as seen in stained cortical sections. The retinotopic map, which was confirmed with electrophysiological recordings, exhibited very low inter-animal variability, th...

متن کامل

Simulation of scanning laser techniques for optical imaging of blood-related intrinsic signals.

Optical imaging of intrinsic signals detects neural activation patterns by taking video images of the local activity-related changes in the light intensity reflected from neural tissue (intrinsic signals). At red light (605 nm), these signals are caused mainly by local variations of the tissue absorption following deoxygenation of blood. We characterize the image generation process during optic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2007